a simple fast Markov Chain program in C, using libmaa
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 

400 lines
11 KiB

#include <time.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include "error.h"
#include "maa.h"
#include "tokenize.h"
#include "markov.h"
#define LEN 50
static char quote = '\'';
static inline void
initialize_neighbours(const char *str,
hsh_HashTable graph_table) {
/* Initialize the table of neighbours corresponding to some string in the markov graph */
assert(!hsh_retrieve(graph_table, str));
neighbours_t *new_neighbours = xmalloc(sizeof (neighbours_t));
CHECK(new_neighbours);
new_neighbours->neighbours = hsh_create(NULL, NULL);
new_neighbours->number = 0;
new_neighbours->unique_num = 0;
hsh_insert(graph_table, str, new_neighbours);
return;
}
static inline unsigned long
numberof_keys(graph_t graph) {
/* Get the number of unique keys in the graph */
hsh_Stats stats = hsh_get_stats(graph.cache);
unsigned long num = stats->entries;
xfree(stats);
return num;
}
static inline unsigned long
numberof_transitionable(graph_t graph) {
/* Get the number of keys with >0 neighbours */
/* Only call after graph has been converted */
unsigned long num = 0;
void *p, *key;
markov_trans_t *val;
HSH_ITERATE(graph.graph, p, key, val) {
if (val->number > 0) {
num++;
}
}
return num;
}
static const char*
get_ngram(const char* str,
graph_t graph) {
/* Try to get a string from the cache.
* If it's not already cached, allocate the memory for it
* then return the freshly cached string
*/
hsh_HashTable cache = graph.cache;
hsh_HashTable graph_table = graph.graph;
const char *exists = hsh_retrieve(cache, str);
if (exists) {
return exists;
}
else {
/* Add it to the cache and return it */
size_t gram_size = strlen(str) + 1;
char *new_str = xmalloc(gram_size);
CHECK(str);
snprintf(new_str, gram_size, "%s", str);
hsh_insert(cache, new_str, new_str);
initialize_neighbours(new_str, graph_table);
return new_str;
}
}
static inline void
insert_neighbour(const char *left,
const char *neighbour,
graph_t graph) {
/* Insert a neighbour into the table of neighbours for a given key */
neighbours_t *neighbours = (neighbours_t *)hsh_retrieve(graph.graph, left);
neighbours->number++;
hsh_HashTable neighbours_table = neighbours->neighbours;
CHECK(neighbours->neighbours);
if (hsh_retrieve(neighbours_table, neighbour)) {
return;
}
neighbours->unique_num++;
const char *new_neighbour = get_ngram(neighbour, graph);
CHECK(new_neighbour);
uint32_t *count = xmalloc(sizeof (uint32_t));
CHECK(count);
*count = 0;
hsh_insert(neighbours_table, new_neighbour, count);
}
static inline void
increment_neighbour(const char *left,
const char *neighbour,
graph_t graph) {
/* Increment the frequency of a given bi-gram.
* bi-gram does not necessarily mean a specific thing
* it could be pairs of words, pairs of letters, sequences of n letters, and so on
*/
neighbours_t *neighbours = (neighbours_t *)hsh_retrieve(graph.graph, left);
hsh_HashTable neighbours_hash = neighbours->neighbours;
CHECK(neighbours_hash);
uint32_t *count = (uint32_t *)hsh_retrieve(neighbours_hash, neighbour);
CHECK(count);
(*count)++;
}
static inline neighbours_t*
get_neighbours(graph_t graph,
char *gram) {
/* Simply return the table of neighbours corresponding to a given string */
neighbours_t *neighbours;
neighbours = (neighbours_t *)hsh_retrieve(graph.graph, gram);
assert(neighbours);
return neighbours;
}
static inline markov_trans_t*
get_prob_neighbours(graph_t graph,
char *gram) {
/* Return the converted probability transitions */
markov_trans_t *neighbours;
neighbours = (markov_trans_t *)hsh_retrieve(graph.graph, gram);
assert(neighbours);
return neighbours;
}
static inline void
convert_neighbours(graph_t graph,
char *gram) {
neighbours_t *neighbours = get_neighbours(graph, gram);
markov_trans_t *result = xmalloc(sizeof (markov_trans_t));
CHECK(result);
size_t nb_size = neighbours->number;
hsh_HashTable neighbours_hash = neighbours->neighbours;
void *key;
uint32_t *frequency;
void *p;
uint32_t index = 0;
probability_t transition;
probability_t *neighbour_array = xcalloc(sizeof (probability_t), nb_size);
CHECK(neighbour_array);
HSH_ITERATE(neighbours_hash, p, key, frequency) {
transition.frequent.frequency = *frequency;
xfree(frequency);
transition.frequent.token = key;
neighbour_array[index] = transition;
index++;
}
float lower = 0.0;
probability_t current;
for (uint32_t i = 0; i < neighbours->unique_num; i++) {
current.frequent = neighbour_array[i].frequent;
neighbour_array[i].bucket.token = current.frequent.token;
neighbour_array[i].bucket.lower = lower;
neighbour_array[i].bucket.upper = lower + ((float)neighbour_array[i].frequent.frequency) /
(neighbours->number);
lower = neighbour_array[i].bucket.upper;
}
result->transitions = neighbour_array;
result->number = neighbours->unique_num;
hsh_delete(graph.graph, gram);
hsh_insert(graph.graph, gram, result);
hsh_destroy(neighbours->neighbours);
xfree(neighbours);
}
static inline void
convert_all_neighbours(graph_t graph) {
void *p, *key;
char *current_key;
unsigned long num_keys = numberof_keys(graph);
if (num_keys == 0) {
return;
}
stk_Stack keys = stk_create();
/* iterate over all keys K, in hash table T */
HSH_ITERATE_KEYS(graph.graph, p, key) {
stk_push(keys, key);
}
for (uint32_t i = 0; i < num_keys; i++) {
current_key = (char *)stk_pop(keys);
convert_neighbours(graph, current_key);
}
stk_destroy(keys);
}
static inline void
relate_bigram(const char *a,
const char *b,
graph_t graph) {
/* Update the graph with the information that b follows a */
const char* str = get_ngram(a, graph);
insert_neighbour(str, b, graph);
increment_neighbour(str, b, graph);
}
static int
transition_cmp(const void *keyval,
const void *datum) {
float chosen_number = *((float *)keyval);
probability_t *transition = (probability_t *)datum;
float lower = transition->bucket.lower;
float upper = transition->bucket.upper;
if ((chosen_number >= lower) &&
(chosen_number <= upper)) {
return 0;
}
else if (chosen_number < lower) {
return -1;
}
else {
return 1;
}
}
static inline char*
pick_random_transition(unique_keys_t unique_neighbours) {
size_t num = unique_neighbours.number;
char **keys = unique_neighbours.keys;
size_t selection = (size_t)floor(drand48() * (num - 1));
return keys[selection];
}
static inline char*
next_ngram(graph_t graph,
char *start,
unique_keys_t unique_neighbours) {
markov_trans_t *transitions = get_prob_neighbours(graph, start);
if (transitions->number == 0) {
return pick_random_transition(unique_neighbours);
}
probability_t *buckets = transitions->transitions;
size_t bucket_size = transitions->number;
float chosen = (float)drand48();
probability_t *result = bsearch(&chosen,
buckets,
bucket_size,
sizeof (probability_t),
transition_cmp);
return ((char *)result->bucket.token);
}
lst_List
generate_strings(markov_chain_t markov_chain,
char *start,
uint32_t n) {
unique_keys_t unique_neighbours = markov_chain.unique;
graph_t graph = markov_chain.graph;
lst_List result = lst_create();
char *current = start;
for (uint32_t i = 0; i < n; i++) {
lst_append(result, current);
current = next_ngram(graph, current, unique_neighbours);
}
return result;
}
static inline unique_keys_t
get_all_keys(graph_t graph) {
/* Gets all unique keys with neighbours */
/* Should only be called after graph generation */
unsigned long number = numberof_transitionable(graph);
char **keys = xcalloc(sizeof (char *), number);
CHECK(keys);
void *p, *key;
unique_keys_t result;
markov_trans_t *val;
uint32_t i = 0;
HSH_ITERATE(graph.graph, p, key, val) {
if (val->number > 0) {
keys[i] = key;
i++;
}
}
result.keys = keys;
result.number = i;
return result;
}
static inline graph_t
make_graph(void) {
/* Make an initial empty graph */
graph_t result;
result.cache = hsh_create(NULL, NULL);
result.graph = hsh_create(NULL, NULL);
return result;
}
static inline void
release_converted_graph(graph_t graph) {
void *p, *key;
markov_trans_t *datum;
/* iterate over all keys K, in hash table and xfree them*/
HSH_ITERATE(graph.graph, p, key, datum) {
xfree(datum->transitions);
xfree(datum);
xfree(key);
}
hsh_destroy(graph.cache);
hsh_destroy(graph.graph);
}
markov_chain_t
build_markov_chain(token_stream tokens) {
markov_chain_t result;
graph_t graph = make_graph();
token_t current;
token_t next;
while (tokens.length > 1) {
current = peek_token(&tokens);
pop_token(&tokens);
next = peek_token(&tokens);
relate_bigram(token_to_string(next), token_to_string(current), graph);
}
convert_all_neighbours(graph);
result.graph = graph;
result.unique = get_all_keys(graph);
return result;
}
char *
token_to_string(token_t token) {
switch (token.token_type) {
case WORD:
return (char*)token.token.word;
break;
case INTEGER:
return (char*)token.token.integer;
break;
case FLOATING:
return (char*)token.token.floating;
break;
case QUOTE:
return &quote;
break;
case PAREN:
return (char*)token.token.parenthesis;
break;
case EMPTY:
printf("should not be here\n");
exit(EXIT_FAILURE);
break;
case STRING:
return (char*)token.token.string;
break;
default:
printf("oops, there was an unknown token, check valgrind or gdb\n");
exit(EXIT_FAILURE);
}
}
void
release_markov_chain(markov_chain_t chain) {
release_converted_graph(chain.graph);
xfree(chain.unique.keys);
return;
}
int
main (void) {
void *test_input = xmalloc(555000);
size_t nbytes = read(STDIN_FILENO, test_input, 555000);
if (nbytes == 0) {
exit(EXIT_FAILURE);
}
token_stream test_bigrams_stack = tokenize(test_input, 0, nbytes);
markov_chain_t chain = build_markov_chain(test_bigrams_stack);
srand48(time(NULL));
lst_List test = generate_strings(chain, token_to_string(peek_token(&test_bigrams_stack)), LEN);
lst_pop(test);
for (uint32_t i = 0; i < LEN-1; i++) {
printf("%s ", (char *)lst_pop(test));
}
printf("\n");
lst_destroy(test);
_lst_shutdown();
release_markov_chain(chain);
xfree(test_input);
release_tokens(&test_bigrams_stack);
return EXIT_SUCCESS;
}