l-system generator in Nim / Raylib
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

345 lines
12 KiB

import lsystempkg/raylib, lsystempkg/raygui
import math, os
import algorithm, heapqueue, random, options, sequtils, sugar, tables, system
# Seed RNG with current time
randomize()
type Term = enum LeafTerm, LineTerm, GoLeft, GoRight, PushTerm, PopTerm
type Terms = seq[Term]
proc rewrite(terms: Terms, maxIterations: int) : Terms =
var currentTerms: Terms = terms
var newTerms: Terms
for _ in repeat(0, maxIterations):
# Reset this each iteration to gather new expansions
newTerms = @[]
for term in currentTerms:
case term:
of LeafTerm:
case sample(toSeq(0..15)):
of 0..10: newTerms &= @[LineTerm, LineTerm, PushTerm, GoRight, LeafTerm, PopTerm, GoLeft, LeafTerm]
of 11..12: newTerms &= @[LineTerm, LineTerm, PushTerm, GoRight, PopTerm, GoLeft, LeafTerm]
of 13..15: newTerms &= @[LineTerm, LineTerm, PushTerm, GoRight, LeafTerm, PopTerm, GoLeft]
else:
continue
else: newTerms &= @[term]
currentTerms = newTerms
# Add a trunk proportional to the number of iterations
# Maybe should be proportional to the total magnitude of the entire thing somehow?
for _ in repeat(0, maxIterations):
currentTerms = @[LineTerm] & currentTerms
return currentTerms
type StackControl = enum Push, Pop
# An intruction along with a change in angle and magnitude (i.e. a vector)
type DrawInstruction = object
angle_change: float64
width: float64
magnitude: float64
color: Color
type
InstructionKind = enum pkDraw, pkStack
Instruction = object
case kind: InstructionKind
of pkDraw: drawInstruction: DrawInstruction
of pkStack: stackInstruction: StackControl
proc `$` (i: Instruction): string =
case i.kind:
of pkDraw: return "angle_change = " & $i.drawInstruction.angle_change & ", magnitude = " & $i.drawInstruction.magnitude
of pkStack: return "direction = " & $i.stackInstruction
iterator axiomToInstructions(maxIterations: int, magnitude: float64, angle: float64, leafColor: Color = DARKGREEN) : Instruction =
var currentLeafColor = leafColor
let axiom = @[LeafTerm]
let termsToConvert = rewrite(axiom, maxIterations)
var angle_delta: float64 = angle
var magnitudes: seq[float64] = @[magnitude]
var widths: seq[float64] = @[maxIterations.float64]
var current_magnitude = magnitude
var current_width: float64 = widths[0]
# axiom
yield Instruction(kind: pkDraw, drawInstruction: DrawInstruction(angle_change: 180, magnitude: magnitude))
for term in termsToConvert:
let angle_delta = angle_delta * sample(@[1.0, 1.0, 0.9])
case term:
of LeafTerm:
# when there's a leaf we want to make the magnitude smaller
let leaf_width = (16 * sample(@[1.2, 1.0, 0.50]))
currentLeafColor.r += (sample(@[1, 2, -1, -2, 3]).uint8)
yield Instruction(kind: pkDraw, drawInstruction: DrawInstruction(color: currentLeafColor, width: leaf_width, angle_change: angle_delta, magnitude: magnitudes[0]))
yield Instruction(kind: pkDraw, drawInstruction: DrawInstruction(color: currentLeafColor, width: leaf_width, angle_change: 0, magnitude: -magnitudes[0])) # hack
yield Instruction(kind: pkDraw, drawInstruction: DrawInstruction(color: currentLeafColor, width: leaf_width, angle_change: -(angle_delta*2), magnitude: magnitudes[0]))
of LineTerm:
# Draw without changing direction
yield Instruction(kind: pkDraw, drawInstruction: DrawInstruction(color: DARKBROWN, width: current_width, angle_change: 0, magnitude: magnitudes[0]))
# L-systems don't go "backwards"
# So you can go left or right on the x-axis at a given angle delta
of GoLeft:
current_magnitude = current_magnitude - (current_magnitude * sample(@[0.05, 0.10]))
current_width = current_width - (current_width * sample(@[0.15, 0.10]))
yield Instruction(kind: pkDraw, drawInstruction: DrawInstruction(color: DARKBROWN, width: current_width, angle_change: angle_delta, magnitude: current_magnitude))
of GoRight:
current_magnitude = current_magnitude - (current_magnitude * sample(@[0.05, 0.01]))
current_width = current_width - (current_width * sample(@[0.15, 0.10]))
yield Instruction(kind: pkDraw, drawInstruction: DrawInstruction(color: DARKBROWN, width: current_width, angle_change: -angle_delta, magnitude: current_magnitude))
# Control the stack of saved positions
of PushTerm:
# Save current location
magnitudes = @[current_magnitude] & magnitudes
widths = @[current_width] & widths
yield Instruction(kind: pkStack, stackInstruction: Push)
of PopTerm:
current_magnitude = magnitudes[0]
current_width = widths[0]
magnitudes = magnitudes[1..^1]
widths = widths[1..^1]
# Pop location stack and set current location to it
# reset magnitude
yield Instruction(kind: pkStack, stackInstruction: Pop)
# A Position along with its angle
type Position = object
x: float64
y: float64
mid: Vector2
angle: float64
proc `$` (p: Position): string =
return "x = " & $p.x & ", " & "y = " & $p.y & ", " & "angle = " & $p.angle
# Line (along with the angle relative to origin
type DrawLine = object
start_pos: Vector2
mid_pos: Vector2
end_pos: Vector2
width: float64
angle: float64
color: Color
proc `$` (d: DrawLine): string =
return "start_pos = " & $d.start_pos & ", " & "end_pos = " & $d.end_pos
proc calculateNextLine(inst: DrawInstruction, pos: Position) : DrawLine =
# Change the angle
let new_angle = inst.angle_change + pos.angle
# Use the same magnitude as before
let magnitude = inst.magnitude
# Convert from polar coordinates to cartesian
let new_x = -(magnitude * cos(degToRad(new_angle)))
let new_y = magnitude * sin(degToRad(new_angle))
result.start_pos = Vector2(x: pos.x, y: pos.y)
# Ending position is relative to the starting position, so add the coordinates
result.end_pos = Vector2(x: result.start_pos.x+new_x, y: result.start_pos.y+new_y)
result.mid_pos = Vector2(x: result.start_pos.x, y: result.end_pos.y)
result.width = inst.width
result.color = inst.color
result.angle = new_angle
proc executeProgram(instructions: seq[Instruction], starting_pos: Position) : seq[DrawLine] =
# each instruction will be followed by a stack control instruction
var insts = instructions
var positions = @[starting_pos]
var current_pos = starting_pos
var draw_lines : seq[DrawLine] = @[]
while insts.len > 0:
let inst = insts[0]
var nextLine: DrawLine
case inst.kind:
of pkStack:
if inst.stackInstruction == Push:
insts = insts[1..^1]
positions = current_pos & positions
elif inst.stackInstruction == Pop:
current_pos = positions[0]
insts = insts[1..^1]
positions = positions[1..^1]
else:
continue
of pkDraw:
nextLine = calculateNextLine(inst.drawInstruction, current_pos)
let new_position = Position(x: nextLine.end_pos.x,
y: nextLine.end_pos.y,
mid: nextLine.mid_pos,
angle: nextLine.angle)
# leave the stack alone, set the current position however
draw_lines = draw_lines & @[nextLine]
insts = insts[1..^1]
current_pos = new_position
return draw_lines
proc guiLoop*() =
# TODO get from xlib
var screenWidth: int = 100
var screenHeight: int = 100
SetConfigFlags(ord(ConfigFlags.FLAG_WINDOW_UNDECORATED))
InitWindow(screenWidth, screenHeight, "L-Systems")
let monitor = GetCurrentMonitor()
screenWidth = (monitor.GetMonitorWidth()).int
screenHeight = (monitor.GetMonitorHeight()).int
SetWindowSize(screenWidth, screenHeight)
SetWindowTitle("L-Systems")
MaximizeWindow()
var mousePos = Vector2(x: 0, y: 0)
var windowPos = Vector2(x: screenWidth.float64, y: screenHeight.float64)
var panOffset = mousePos
SetTargetFPS(60)
# Control variables
var dragWindow = false
var restartSimulation = false
var clearForest = false
var restartButton = false
var magnitude: float64 = 10
var angle: float64 = 30
var iterations = 2
var startingPosition_x: float32 = screenWidth/2
var startingPosition_y: float32 = screenHeight.float32
var startingPositions: seq[Position] = @[]
var instructionLists: seq[seq[Instruction]] = @[]
var drawLinesList: seq[seq[DrawLine]] = @[]
var zoom: float32 = 1
var rotation: float32 = 0
var camera_x_offset = screenWidth/2
var camera_y_offset = screenHeight/2
var camera: Camera2D
camera.offset = Vector2(x: camera_x_offset, y: camera_y_offset)
camera.target = Vector2(x: screenWidth/2, y: screenHeight/2)
camera.rotation = rotation
camera.zoom = zoom
while not WindowShouldClose():
BeginDrawing()
restartSimulation = GuiButton(Rectangle(x: 0.float32, y: 20.float32, width: 100.float32, height: 20.float32), "Restart".cstring)
clearForest = GuiButton(Rectangle(x: 0.float32, y: 40.float32, width: 100.float32, height: 20.float32), "Clear".cstring)
let fewerIterations = GuiButton(Rectangle(x: 0.float32, y: 60.float32, width: 100.float32, height: 20.float32), "Fewer".cstring)
let moreIterations = GuiButton(Rectangle(x: 0.float32, y: 80.float32, width: 100.float32, height: 20.float32), "More".cstring)
magnitude = GuiSliderBar(Rectangle(
x: 0.float32,
y: 100.float32,
width: 80.float32,
height: 20.float32),
"Smaller",
"Larger",
magnitude,
10, 100)
angle = GuiSliderBar(Rectangle(x: 0.float32,
y: 120.float32,
width: 80.float32,
height: 20.float32),
"Narrower",
"Wider",
angle,
1, 360)
if IsKeyDown(KEY_DOWN) and IsKeyDown(KEY_LEFT_CONTROL):
zoom -= 0.01
if IsKeyDown(KEY_UP) and IsKeyDown(KEY_LEFT_CONTROL):
zoom += 0.01
if IsKeyDown(KEY_LEFT) and IsKeyDown(KEY_LEFT_CONTROL) and rotation < 360:
rotation += 1
if IsKeyDown(KEY_RIGHT) and IsKeyDown(KEY_LEFT_CONTROL) and rotation > -360:
rotation -= 1
camera.zoom = zoom
camera.rotation = rotation
if GetMouseX() <= 0:
camera_x_offset += 5
if GetMouseX() >= (GetScreenWidth() - 10):
camera_x_offset -= 5
if GetMouseY() <= 10:
camera_y_offset += 5
if GetMouseY() >= (GetScreenHeight() - 10):
camera_y_offset -= 5
camera.offset = Vector2(x: camera_x_offset, y: camera_y_offset)
if fewerIterations:
if iterations > 1:
iterations -= 1
restartSimulation = true
if moreIterations:
restartSimulation = true
iterations += 1
if IsKeyDown(KEY_LEFT_CONTROL) and IsMouseButtonPressed(MOUSE_LEFT_BUTTON):
startingPosition_x = GetMouseX().float32
startingPosition_y = GetMouseY().float32
let newPositionVector = GetScreenToWorld2D(Vector2(x: startingPosition_x, y: startingPosition_y), camera)
let newPosition = Position(x: newPositionVector.x, y: newPositionVector.y, angle: 90)
startingPositions &= @[newPosition]
let newInstructions = toSeq(axiomToInstructions(iterations, magnitude, angle))
drawLinesList &= @[executeProgram(newInstructions, newPosition)]
if restartSimulation:
echo "Re-executing"
drawLinesList = @[]
for startingPosition in startingPositions:
let instructions = toSeq(axiomToInstructions(iterations, magnitude, angle))
drawLinesList &= @[executeProgram(instructions, startingPosition)]
if clearForest:
drawLinesList = @[]
instructionLists = @[]
startingPositions = @[]
# Make sure to clear the background before drawing
ClearBackground(BLACK)
# Only want the camera to apply to drawn stuff, not controls
BeginMode2D(camera)
for drawLines in drawLinesList:
for line in drawLines:
DrawLineEx(line.start_pos, line.end_pos, line.width, line.color)
EndMode2D()
EndDrawing()
CloseWindow()
when isMainModule:
guiLoop()